1. Developing understanding of and applying proportional relationships - Sutdents extend their understanding of raios and develop understanding of proporitionality to solve single- and mult-step problems. Suddents use their
understanding of ratios and proporionality to solve a wide variey of percent problems, including those involving discounts, interest, taxes, tips, and
percent incease or decrease. Students solve problems about scale percent increase or decrease. Students solve problems about scale
drawings by relaing corresponding lengths between the objects or by using drawings by relang corresponding lengths beween the objects or by using
tee fact that relaionships of lengths witinin an object are preserved in similar objects. Students graph proporfional relationships and understand the unit rate iniormally as a measure of the steepness of the related line, called the
slope. They disfinguish proportional relaionships from other relationships.
Developing understanding of operations with rational numbers and
working with expressions and linear equations

- Students develop a unified understanding of number, recognizing fracions, decimals (that have a finite or a repeating decimal representaion), and
percents as different representaions of rational numbers. Sudents extend addition, subbraction, multipication, and division to all raional numbers, maintaining the properties of operations and the relationstips between
addition and subtaction, and multoication and division By Bepplying tees properties, and by viewing negative numbers in terms of everyday contexts (e.g., amounts owed or temperatures below zero), students explain and intiepret the rules for adding, subtracting, multitylying, and dividing with
negaive numbers. They use the arimelic of raional numbers as they negaive numbers. They use the arithmeic of rational numbers as the)
formulate expressions and equations in one variable and use these equations to solve problems.

3. Solving problems involving scale drawings and informal geometric constructions, and working with two- and three-dimensional shapes to
Students continue their work with area from Grade e, solving problems
involving the area and circumference of a circle and surface area of tree. dimensional objects. In preparation for work on congruence and similarity in Grade 8 they reason about relationships among two-dimensional figures using scale drawings and intrmal geometic constuctions, and they gain familiarity with the relationstips beween angles formed by intersecting lines. sudent work with theee-dimensional tigures, relating them to two-
dimensional figures by examining cross-sections. They solve rea-wordd and mantemaical problems involving area, surface area, and volume of twoand three-dimensional objects composed of tiangles, quadriderals, polygons, cubes and right prisms.
. Drawing inferences about populations based on samples
Suddents build on their previous work with single data distribuions to beween populations. They begin informal work with random sampling generate data sets and learn about the importance of representative samples for drawing inferences.
Ratio and Proportional Relationships
nalyze proportional relationships and use them to solve real-world and nathematical problems.
7.RP.1: Compute unit rates associaded with ratios of factions, including ratios of lenghs, areas and oher quantities measured in ike or difierent units. For
example, if a person walks $1 / 2$ mile in each $1 / 4$ hour, compute the unit rate the complex fraction (1/2)/(1/4) miles per hour, equivalently 2 miles per hour.
7.RP.2: Recognize and represent proporional relationships between quanties
a. Decide whether wo quantities are in a proporfional relationship, e.g., by and observing wheterer the graph is a straight line trough the origin
b. Idenify the constant of proportionality (unit rate) in tables, graphs, equations,
relaionships.
c. Represent proporional relaionships by equations. For example, if Represent proportional relationships by equations. For example,
total cost t is proportional to the number nof tems purchased at a constant price p p, the e relationshim betweer the total cost and the
number of tems can be expressed as $t=$ pr.

Arizona's Common Core Standards - Mathematics - $7^{\text {th }}$ Grade Standards Placemat
d. Explain what a point (x, y) on the graph of a proportional relaionship means in terms of the situation, with special atention to the point (0 ,
0) and ($1, r$) where r is the unit rate.
7.RP.3: Use proporional relationships to solve mulistep raio and percent problems. Examples: simple intersst, tax, markups and markdowns, gratuitites

The Number Systen

Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers.
7.NS.1: Apply and extend previous understandings of addition and subtraction to horizonal or orevtical number line diagramest addition and subraction on horizonal or verical number line diagram.
a. Describe situations in which opposite quanifies combine to make For example, a hydrogegn taom has 0 .
constituents are oppositely charged.
b. Understand $p+q$ as the number located a distance $|q|$ from p, in the positive or negative direction depending on whether q is positive or negative. Show that a number and its opposite have a sum of of (ais addive inverses.).
real-world contexs.
c. Understand subtracion of raional numbers as adding the additive inverse, $p-q=p+(-q)$. Show that the distance between wo rationa inverse, $p-q=p+(-q)$. Show hat he esistance beween wo reaional
numbers on the number lini ithe absolut value of their difference,
and apply tis principle in real-world contexts.
d. Apply properifes of operaions as stategies to add and subract
rational numbers.
7.NS.2: Apply and extend previous understandings of multipication and division and of fractions to multiply and divide rational numbers.
a. Understand that multipication is extended from fractions to rational numbers by requiring that operations confinue to saisfy the properties of operations, particularary the distributive property, leading to propducts
such as $(-1)(-1))=1$ and the rules tor mutioplying signed numbers. such as $(-1)(-1)=1$ and the rules for multiplying signed numbers.
Interpet products of rational numbers by describing real-world Interpret
contexs.
b. Understand that integers can be divided, provided that the divisor is not zero, and every quotent of integers (with non-zero divisor) is a rational number. If p and q are integers, then $-(p / q)=(-p) / q=p(-q)$.
Interreret quofents of raional numbers by describing real-world Interpert qu
contexts.
c. Apply properies of operations as strategies to multiply and divide
c. Apply roperies of
d. Convert a rational number to a decimal using long division; know that the decimal form of a rational number terminates in 0 s or evenuually repeas.
7.NS.3: Solve real-world and mathematical problems involving the four operations wor raional numbers. Nonsialaing fractions to complex fractions.)
Expressions and Equations
Expressions and Equations Use properties of operations to generate equivalent expressions.
7.E.1: Apply properties of operations as strategies to add, subtract, factor, and
7.EE.2: Understand that rewriting an expression in diferent context can shed light on the problem and how the quansities a problem context can shed light on the problem and how the quanties in it are
related. For example, a $+0.05 a=1.05 a$ means that "increase by 5% " is
the same as "muttiply by 1.05 "
Solve real-life and mathematical problems using numerical and algebraic
75E3. Sove wilist
Solve muli-step real-life and mathemaical problems posed with positive and negative rational numbers in any form (whole numbers, fractions, and decimals), using tols strategically. Apply properties of operations to
calculate with numbers in Calculaes with numbers in any form; convert between forms as appropriate;
and assess the reasonableness of answers using mental computaion and
estimat and assess the reasonableness of answers using mental computation and
estimaion strategies. For example: If a woman making $\$ 25$ an hour gets a
10% raise, she will make an additional $1 / 10$ of her salary an hour, or \$2.50, for a new salary of $\$ 27.50$. If you want to place a towel bar $93 / 4$
inches long in the center of a door that is $271 / 2$ inches wide, you will need inches 10 ing in the center of a door that is $271 / 2$ inches wide, you will need
to place the bar about 9 inches from each edge; this estimate can be used as a check on the exact computation.
7.EE.4: Use variables to represent quantifes in a real-world or mahemaical problem, and construct simple equations and inequalifes to solve
roblems by reasoning about the quantities.
a. Solve word problems leading to equations of the form $p x+q=r$ and $p(x$ $+q)=r$, where p, q, and r are specific rational numbers. Solve equations of these forms fuently. Compare an algebraic solution to an arititmetic solution, identifining the sequence of the operations used in each approach. For example, the pe
Its length is 6 cm . What is ist width?
b. Solve word problems leading to inequalities of hef form $p x+q>r$ or $p x$ $+q<r$, where p, q, and d rare specific rational in umbers. . r raph the
solution set of the inequality and inerrete it in the context of the souron set of tee inequality and interpet it in the contiext of the
problem. For example: A s a salesperson, you are paid 50 per week plus $\$ 3$ per sale. This week you want your pay to be at least $\$ 100$. describe the solutions.

Geometry

Draw, construct, and describe
7.G.1: \quad Solve problems involving scale drawings of geometic figures, including computing actual lenght and areas from a scale drawing and reproducing a scale drawing at a difierent scale.
7.G.2: Draw (reehand, with ruler and protractor, and with technology) geometic shapes with given condifions. Focus on constucting tiangles from tree
measures of angles or sides, noticing when the condifions determine a unique tiangle, more than one triangle, or no tiangle.
7.G.3: Describe the two-dimensional figures that result from slicing treedimensional figures, as in plane sections of right rectangular prisms and
right rectangular pyramids. right rectangular pyramids.
Solve real-life and mathematical problems involving angle measure, area,
surface area, and volume.
7.G.4: Know the formulas tor the area and circumference of a circle and use them to solve problems: give an informal derivation
between the circumference and area of a circle.
7.G.5: Use facts about supplementary, complementary, verical, and adjacent angles in a ault-step problem to write and solve simple equations for an unknown angle in a figure.
7.G.6: Solve real-word and mathemaical problems involving area, volume and quadrilaerals, polygons, cubes, and right prisms.

Statistics and Probability

se random sampling to draw inferences about a population
7.SP.1: Understand that staisicics can be used to gain intirmation about a population by examining a sample of the eppulation; genereriliations about a populaion from a sample are vaid only ythe sample is repiesenaive representaive samples and support valid inferences.
7.SP.2: Use dala from a random sample to draw inferences about a population simulated samples) of the same size to gauge the variation in esfimates or predicions. For example, estimate the mean word length in a book by randomyly sampling words from the book; predict the winner of a school election based on randomy sam estimate or prediction might be.
Draw informal comparative inferences about two populations.
7.SP.3: Informally assess the degree of visual overlap of two numerical data Ifismaly assess the degree of visual overlap of wo numerical dala centers by expressing it as a multpipe of a measure of variability. For
example, the mean height of players on the basketball team is 10 cm
greater than the mean height of players on the soccer team, about twice the variabilty (mean absolute deviaition) on either team; on a dot plot
separation between the two distributions of heights is noticeable.
Use measures of center and measures of variabilit for numerical dala
from random samples to draw informal comparative inferences about two opulaions. For example, decide whether the words in a chapter of a populaions. For example, decide weener the words in achapier of a
seventh-rade science oook are generlly longer than the words in a
chapter of a fouth-grade science book.
Investigate chance processes and develop, use, and evaluate probability
models.
Understand that the probability of a chance event is a number between 0 and 1 that expresses the ilikilhood of the event occurring. Larger unikely event a probability around 112 indicicates an event tatat is seither pproximate te probabily of a chance event by collecing dat on the chance process that produces it and observing is long-run relative requency, and predict the approximate relative frequency given the probability. For example, when rolling a number cube 600 times, predic 200 times. 200 times
Develop a probability model and use it to find probabilities of events. Compare probabilites from a model to observed frequencies; if the
a. Develop a uniform probability model by assigning equal probability to For example, if a student is seleccted at random trom a class, find the For example, if a student is selected at random from a class, find the
probability that Jane will be selected and the probabilty that a girl will be selected.
b. Develop a probability model (which may not be unifiom) by observing requencies in data generated from a chance process. For example, Ind the approximate probability that a spinining penny will land heads por that a tossed paper cup will land open-end down. Do the outcomes for the spinning penny appear to be equally likely based o
he observed frequencies?
7.SP.8: Find probabilites of compound events using organized list, tables, tree
diagrams, and simulation
a. Understand that just as with simple events, the probability of a whico the compound event occurs.
b. Represent sample spaces for compound event using methods such as organized lists, tables and tee diagrams. For an event described in everyday language (e.g., "rolling double sixes"), dentify the outcomes the sample space which compose the evert
c. Design and use a simulation to generate frequencies for compound approximate the answer to the question: If 40% of donors have type approximate the enswer to the question: If 40\% of donors have type A
blod, what is the probability that it will take at least 4 donors to find one with type A blood?

Mathematical Practices
. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
. Construct viable arguments and critique the reasoning of others.
Model with mathematics.
5. Use appropriate tools strategically.

Attend to precision.
Look for and make use of structure
8. Look for and express regularity in repeated reasoning.

