Formulating and reasoning about expressions and equations, including modeling an association in bivariate data with a linea equation, and solving linear equations and systems of linear equations

- Students use linear equations and systems of linearequations to represent, analyze, and solve a variety of problems. Students recognize
equations for proportions $(y / x=m$ or $y=m x$) as special linearequations $(y=m x+b)$, understanding that the constant of proportionality (m) is
the slope, and the graphs are lines through the origin. Theyunderstan the stope, and (he graphis are ines through the of line is a constant rate of change, so that if the input or x-coordinate changes by an amount A, the output or y coordinate changes by the amount $m \cdot A$. Students also use a linear equation to describe the association between two quantities in bivariate data (such as arm span vs. height for students in a classroom). At this grade, iting he modi, informally. Interreting the model in the context of the atata requir students to express a relationship between the two quantities in question and to interpret components of the relationship (such as slope and y-intercept) in terms of the situation.
- Students strategically choose and efficiently implement procedures to solve linear equations in one variable, understanding that when they use the properties of equality and the conceptof logical equivalence, they maintain the solutions of the original equation. Students solve systems of two lineare equations in two variables and relate the system
to pairs of lines in the plane; these intersect, are parallel. or are the same line. Students use linearequations, systems of linearequations, linearfunctions, and their understanding of slope of a line to analyze situations and solve problems.

2. Grasping the concept of a function and using functions to describe quantitative relationships

- Students grasp the conceptof a function as a rule that assigns to each input exactly one output. Theyunderstand that functions describe situations where one quantity determines another. They can translate among representations and partial representations of functions (noting that tabular and graphical representations may be partial reflected in the different representations.
Analyzing two- and three-dimensional space and figures using distance angle similurity and congrunce and undersuring and distance, angle, stimilarity, and cong
applying the Pythagorean Theorem
- Students use ideas about distance and angles, how they behave unde translations, rotations, reflections, and dilations, and ideas about congruence and similarity to describe and analyze two-dimensiona
figures and ligues and to solve problems. Students show that the sum of the angles in a triangle is the angle formed by a straight line, and that
various configurations of lines give rise to similartiangles because of the angles created when a transversal cuts parallel linges becaus understand the statement of the Pythagorean Theorem and its converse, and can explain why the Pythagorean Theorem holds, for example, by decomposing a square in two different ways. They apply the Pythagorean Theorem to find distances between points on the coordinate plane, to find lengths, and to analyze polygons. Students complete their work on volume by solving problems involving cones,
cyinders, and spheres. The Number System
bers that are not rational, and approximate them NS 1 . Understand informally that every number has a decimal expansion;
the rational numbers are those with decimal expansions that termina in 0 s or eventually repeat. Know that other numbers are called irrational.

Arizona's Common Core Standards - Mathematics - $8^{\text {th }}$ Grade Standards Placemat

8.NS.2: Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number lin example, by truncating the decimal expansion of $\sqrt{2}$ show that $\sqrt{2}$ example, by $\begin{aligned} & \text { is betwaeen } 1 \text { and } 2 \text {, then between } 1.4 \text { and } 1.5 \text {, and explain how to }\end{aligned}$ continue on to get better approximations.

Expressions and Equations

ork with radicals and integer exponents.
8.EE.1: Know and apply the properties of integer exponents to generate equivalent numerical expressions. For example, $3^{2} \times 3^{-5}=3^{-3}=1 / 3^{3}=$
8.EE.2: Use square root and cube root symbols to represent solutions to equations of the form $x^{2}=p$ and $x^{3}=p$ where p is a positive rational
number. Evaluate square roots of small perfect squares and cube root of small perfect cubes. Know that $\sqrt{2}$ is irrational.
8.EE.3: Use numbers expressed in the form of a single digit times an integer xxress how many times as much one is than the other Forexample estimate the population of the United States as 3×10^{8} and the population of the world as 7×10^{9}, and determine that the world population is more than 20 times large.
8.EE.4: Perform operations with numbers expressed in scientific notation, including problems where both decimal and scientific notation are used Use scientific notation and choose units of appropriate size for
measurements of very large or very small quantities (e.g., use millimeters peryear for seafloor spreading). Interpret scientific notation that has been generated by technology.
Analyze and solve linear equations and pairs of simultaneous linear equations.
8.EE.5: Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. For example, compare a distance-time graph to a distance-time ed
8.EE.6: Use similartriangles to explain why the slope m is the same between any two distinctpoints on a non-vertical line in the coordinate plane; derive the equation $y=m x$ for a line through the origin and the
equation $y=m x+b$ for a line intercepting the vertical axis at b.
Understand the connections between proportional relationships, lines, and linear equations.
8.EE.7: Solve linear equations in one variable
a. Give examples of linear equations in one variable with one solution, infinitely many solutions, or no solutions. Show which of these equation into simplerf forms, until an equivalentequation of the form $x=a, a=a$, or $a=b$ results (where a and b are different numbers).
b. Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using
the distributive property and collecting like terms.
8.EE.8: Analyze and solve pairs of simultaneous linearequations
a. Understand that solutions to a system of two linear equations in two variables correspond to points of intersection of their graphs, because points
simultaneously.
b. Solve systems of two linear equations in two variables algebraically, and estimate solutions by graphing the equations.
$2 y=6$ have no solution becuse $3 x+2 y$ cannot simutaneous be 5 and 6 .
c. Solve real-world and mathematical problems leading to two linear quations in two variables. For example, givencoordinates for two points intersects the line through the second pair.

Functions

Define evaluate and compare functions.
8.F.1: Understand that a function is a rule that assigns to each input exactly Tensisting of an input and the corresponding output. (Note: Fun notation is not required in Grade 8.) notionis not requred hrade8.)
8.F.2: Compare properties of two functions each represented in a different way (algebraically, graphically, numericallyin tables, or by verbal
descriptions). For example, given a linear function represented by a escriptions). For example, given a linear function represented by a expression, determine which function has the greater rate of change.
8.F.3: - interpret the equation $y=m x+b$ as defining a linear function, whose graph is a straight ine; give examples of functions that are not linear. For example, the function $A=s^{2}$ giving the area of square as a unction of its side length is not linear because its graph contains the unctions to m odel relationships between quantities.
8.F.4: Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function rom a description of a relationship or from two (x, y) values, including eading these from a table or from a graph. Interpret the rate of change and in terms of its graph or a table of values.
8.F.5: Describe qualitatively the functional relationship between two quantities by analyying a graph (e.g., where the function is increasing or
decreasing, linearor nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally.
Geometry
Understand congruence and similarity using physical models, transparencies, or geometry software.
8.G.1: Verify experimentally the properties of rotations, reflections, and translations:
a. Lines are taken to lines, and line segments to line segments of the same length.
b. Angles are taken to angles of the same measure.

Parallel lines are taken to parallel lines.
8.G.2: Understand that a two-dimensional figure is congruento another if the second can be obtained from the first by a sequence of rotaions, reflections, and translations; given two congruent figures, describe a sequence that exhibits the congruence between then
8.G.3: Describe the effect of dilations, translations, rotations, and reflections on two-dimensional figures using coordinates.
8.G.4: Understand that a two-dimensional figure is similarto another if the second can be obtained from the first by a sequence of rotations, reflections, translations, and dilations; given two similar twodimensional figures, describe a sequence that exhibits the similarity
between them. between them.
8.G.5: Use informal arguments to establish facts about the angle sum and exterior angle fianges, about he anglescrealed when parallinef
triangles. For example, arrange three copies of the same triangle so that the sum of the three angles appears to form a line, and give an
argument in terms of transversals why this is so
Understand and apply the Pythagorean Theorem,
8.G.6: Explain a proof of the Pythagorean Theorem and its converse.
8.G.7: Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and thre
dimensions.
G.8: Apply the Pythagorean Theorem to find the distance between two points in a coordinate system
olve real-world and mathematical problems involving volume of cylinders, ones, and spheres.
G.9: Know the formulas for the volumes of cones, cylinders, and sphere and use them to solve real-world and mathematical problems.
tatistics and Probability
investigate patterns of association in bivariate data
8.SP.1: Construct and interpret scatter plots for bivariate measurementdata to patterss such as clustering outiliers, positive or negative associaition, linear association, and nonlinear association
8.SP.2: Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear
association informally fit a straight line and informallyassess the model $f i t$ by judging the closeness of the data points to the line.
8.SP.3: Use the equation of a linear model to solve problems in the context of bivariate measurementdata, interpreting the slope and intercept. For example, in a linearmodel for a biology experiment, interpret a slope of $1.5 \mathrm{~cm} / \mathrm{hr}$ as meaning that an additional hour of sunlight each day is associated with an additional 1.5 cm in mature plant height
8.SP.4: Understand that patterns of association can also be seen in bivariate categorical data by displaying frequencies and relative frequencies in two-way table. Construct and interpret a two-way table summ marizing Use relative frequencies calculated for rows or columns to describe possible association between the two variables. For example, collect data from students in your class on whether or not they have a curfew on school nights and whether or not they have assigned chores at have chores?

Mathematical Practices

. Make sense of problems and persevere in solving them
2. Reason abstractly and quantitatively.

Construct viable arguments and critique the reasoning of others
Model with mathematics.
. Use appropriate tools strategically.
. Attend to precision.
8. Look for and express regularity in repeated reasoning.

